# Print

## A. Prior to the lesson:

1. Arrange students into groups. Each group needs at least ONE person who has a mobile device.

2. If their phone camera doesn't automatically detect and decode QR codes, ask students to

• Bring these devices into the lesson.

4. Cut them out and place them around your class / school.

## B. The lesson:

1. Give each group a clipboard and a piece of paper so they can write down the decoded questions and their answers to them.

2. Explain to the students that the codes are hidden around the school. Each team will get ONE point for each question they correctly decode and copy down onto their sheet, and a further TWO points if they can then provide the correct answer and write this down underneath the question.

3. Away they go! The winner is the first team to return with the most correct answers in the time available. This could be within a lesson, or during a lunchbreak, or even over several days!

## C. TIPS / OTHER IDEAS

4. A detailed case study in how to set up a successful QR Scavenger Hunt using this tool can be found here.

### Question

1. Riješi sustav metodom po želji: 4x + 5y = 8 i –3x – 5y = –11(-3, 4)
2. Riješi sustav metodom po želji: x + y = 7 i 3x – 2y = 11(5, 2)
3. Riješi sustav metodom po želji: 2x + 3y = 1 i 3x – 2y = 21(5, -3)
4. Riješi sustav metodom po želji: x + 2y = 10 i 2x + 3y = 17(4, 3)
5. Riješi sustav metodom po želji: –4x + 5y = 22 i 4x + 2y = 48(7, 10)
6. Riješi sustav metodom po želji: 2x + 3y = 1 i 4x + 4y = 4(2, -1)
7. Riješi sustav metodom po želji: 2x – y = 12 i 3x + 2y = 11(5, -2)
8. Je li uređeni par (1, 2) rješenje sustava jednadžbi 3x + y = 5 i x - 5y = 7?Nije
10. Koliko rješenja ima jednadžba s dvije nepoznanice? Beskonačno mnogo.
11. Što je rješenje sustava dviju linearnih jednadžbi s dvije nepoznanice?Uređeni par brojeva koji zadovoljava obje jednadžbe.
12. Koliko sustav dviju linearnih jednadžbi s dvije nepoznanice može imati rješenja?Jedno, nijedno ili beskonačno mnogo
13. Metodom po želji riješi sustav: x + 3y = 20 i 3x – y = –10(-1, 7)
14. Metodom po želji riješi sustav: 2x – y = 6 i 5x + 7y = 15(3,0)
15. Zbroj dvaju brojeva iznosi 64, a njihov je količnik jednak 3. Koji su to brojevi?To su brojevi 48 i 16.
16. Obrazloži naziv metode supstitucije.Jednu nepoznanicu zamjenjujemo izrazom u kojem je ta nepoznanica izražena pomoću druge.

### Odaberi metodu rješavanja sustava: QR Challenge

Question 1 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 2 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 3 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 4 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 5 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 6 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 7 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 8 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 9 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 10 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 11 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 12 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 13 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 14 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 15 (of 16)

### Odaberi metodu rješavanja sustava: QR Challenge

Question 16 (of 16)